Phytochemistry and Free Radical Scavenging Activity of Some Indigenous Vegetables in the Ilocos

MAINGELLINE B.VIVIT* AND MENISA A. ANTONIO

Research Directorate, Mariano Marcos State University
City of Batac, Ilocos Norte

INTRODUCTION

- Various indigenous edible species abound in Ilocos Norte
- 46 indigenous plants were documented (Antonio, et al., 2011)
 - 33 indigenous vegetables (IVs)
 - Wildly grown; some domesticated

Common Indigenous Vegetables (IVs)

Table I. Traditional use of the five IVs as food and medicine

Species/Family	Traditional Use	References
B. luzonica Moraceae	Male inflorescence and tops are cooked into viand. Female inflorescence are also edible but less preferred	Antonio, et al., 2011
	Remedy for skin diseases, open wounds, stomach ache, anthelmintic and colic	www.erdb.denr.gov. ph
T. procumbens Apocynaceae	Inflorescence and young fruit for vegetable viand (cooked w/other vegetables)	Antonio, et al., 2011
	Used for cleansing wounds, scabies, ulcers and headache; as cataplasma, expectorant and antitussive	www.stuartxchange. com
Schismatoglottis sp. Araceae	Vegetable dish; leaves arranged and cooked in a pot. Cooked with fish paste, coconut milk, dried fish or dried wild pig meat. Crushed leaves used to revive fainting person	Antonio, et al., 2011
M. cochinchinensis	Young fruits for vegetable viand, tops for salad and viand	Antonio, et al., 2011
Cucurbitaceae	Treatment for head lice, hemorrhoids, glandular swelling of the neck, mammary abscesses, mesenteric enlargements, bruises, wounds, swellings, pectoral, hepatic and splenic obstructions, unhealthy ulcerations, and lumbago	www.stuartxchange. com
M. verticillata	Tops for salad. Good for anaemic	Antonio, et al., 2011
Molluginaceae	Utilized as demulcent and poultrice	www.naturalmedicin alherbs.net

- Indigenous vegetables (IVs)
 - good source of vitamins, minerals and phytochemicals
 - medicinal properties: antidiabetic, antimicrobial, antioxidant, and more
- Phytochemicals marked an essential role in disease prevention through their biological activities

OBJECTIVES

- To determine the phytochemical constituents present in the crude extracts derived from the five indigenous vegetables; and
- To evaluate the in vitro antioxidant activity of the indigenous vegetables crude extracts

METHODOLOGY

Collection Areas: Adams and Batac

Taxonomic Validation at Phil National Museum

(Herbarium voucher specimens deposited)

Preparation of Samples

Collection of samples

• Edible organs: inflorescence, fruit, leaves/leaftops

Processing of samples

 Samples were weighed, washed, cut/sliced dried, and ground to powder

Preparation of extracts

- Powder samples were macerated and filtered
- Filtrates were concentrated

Phytochemical Screening

- Qualitative phytochemical analysis was done following the standard procedures of Tiwari, et al., 2011 and Himesh, et al., 2011 to determine the following:
 - Alkaloids
 - Flavonoids
 - Tannins
 - Saponins
 - Phenols

- Coumarins
- Anthraquinones
- Cardiac glycosides
- Steroids
- Terpenoids

Evaluation of Antioxidant Activity

- DPPH Free Radical Scavenging Assay (Marinova & Batchvarov, 2011 with modifications)
- Extracts: 50-500μg/ml
- Standard/reference: Gallic acid (50-500μg/ml)
- Control: ethanol + DPPH solution (0.06mM)
- Blank: ethanol
- Absorbance were measured using UV-Vis Spectrophotometer at 517nm
- RSA% = ((Abs Cntrl Abs Sample)/Abs Cntrl)*100

RESULTS

Table 2. Phytochemical constituents of the five IVs

Plant Species		Flavonoid	Anthraquinone	Phenol	Steroid	Terpenoid	Saponin	Tannin	Cardiac glycoside	Coumarin
B. luzonica		+	-	+	+	+	_	+	+	+
M. verticillata		+	=	+	+	+	-	=	+	+
M. cochinchinensis		-	-	+	+	+	-	-	+	+
Schismatoglottis sp.		+	-	+	+	+	-	-	+	+
T. procumbens		+	-	+	+	+	-	+	+	+

Table 3. Biological activities of the phytochemicals

Phytochemicals	Function	Present In
Phenol	Anti-oxidant, anti-cancer, anti-tumor	All 5 IVs
Flavonoid	Anti-oxidant, Anti-inflammatory, anti-viral, anti-microbial,, anti-cancer, anti-tumor	B. luzonica, M. verticillata, M. cochinchinensis, T. procumbens
Coumarin	Anti-coagulant, anti-fungi, anti-tumor, anti-cancer, immunostimulant, anti-inflammatory	All 5 IVs
Tannin	Anti-oxidant, anti-septic, anti-inflammatory, anti-tumor, anti-diarrhoea, haemostatic	B. luzonica T. Procumbens
Terpenoid	Anti-oxidant, anti-cancer, anti-malarial, anti- ulcer, hepaticidal, antimicrobial	All 5 IVs
Steroid	Anti-inflammatory, sedative, insecticidal, cytotoxic	All 5 IVs
Cardiac glycoside	Cardio-vascular protection, anti-proliferative	All 5 IVs

Table 4. DPPH radical scavenging activities (%) of the five IVs

Conc. (µg/ml)	Gallic acid	B. luzonica	M. verticillata	M. cochinchinensis	Schismatoglottis sp.	T. procumbens
50	94.55±0.07b	28.91±1.74 ^d	45.11±0.09e	47.28±0.31°	49.14±0.26 ⁹	50.10±0.099
100	95.24±0.10 ^{ab}	67.08±1.89°	45.71±0.09d	52.17±0.15 ^e	54.59±0.00 ^f	56.56±0.00 ^f
150	95.56±0.07 ^{ab}	86.90±0.52b	46.52±0.09 ^d	54.69±0.09e	59.28±0.00e	62.36±0.09e
200	95.73±0.08ª	89.00±0.26 ^a	46.67±0.09 ^d	58.07±0.15 ^e	63.17±0.35 ^d	68.26±0.09 ^d
250	95.83±0.14ª	89.35±0.30ª	48.28±0.09°	60.65±0.16e	67.46±0.15°	73.76±0.09°
350	95.98±0.08 ^a	89.78±0.26ª	49.39±0.09 ^b	65.79±0.40e	74.27±0.15 ^b	84.56±0.15b
500	96.26±0.04ª	89.95±0.15 ^a	51 21±0.09a	73.16±0.09e	81.94±0.09 ^a	93.74±0.09a
IC ₅₀	15.79	79.34	405.86	3,062.05	100.76	38.80

Values represent mean+SD (n=3)

Figure 1. Antioxidant activity of the five indigenous vegetables

Significance of antioxidants

- Antioxidant activity is much associated with chemo-protective action against oxidative stress causing:
 - Cellular and metabolic injuries
 - Accelerated aging
 - Cancer
 - Cardio-vascular & neurodegenerative diseases
 - Inflammation
- Antioxidants inhibits oxidation by scavenging free radicals

CONCLUSIONS

- Seven phytochemicals present: flavonoids, phenols, steroids, terpenoids, tannins, cardiac glycosides and coumarins
- All five vegetables exhibited antioxidant activity
- These suggest that the five indigenous vegetables are healthy food and could be a possible source of nutraceutical products

RECOMMENDATIONS

- Elucidation of the chemical fingerprint along with the nutritive components of the vegetable species is necessary to:
 - validate the ethnomedicinal uses;
 - determine the antioxidant compounds; and;
 - o identify other therapeutic applications.
- Exploratory work on other biological activities is also important to establish the medicinal properties of the five vegetables

