PERFORMANCE EVALUATION OF INBRED LOWLAND RICE VARIETIES UNDER VARYING NUTRIENT MANAGEMENT IN IRRIGATED LOWLAND ECOSYSTEM

MIRASOL L. AGPULDO Apayao State College

RATIONALE

- Rice is very important crop in the Philippines because it accounts for 35% of the average calorie intake of the population.
- Production needs to be increase to meet the population food requirement despite the conversion of the agricultural lands and the use of lesser inputs.
- A major strategy that can be used to meet this enormous challenge is to increase the yield of rice per unit area.
- Fertilizer is vital for rice production where nearly all rice farmers use fertilizers but most farmers do not use the best nutrient management practices in rice production (Buresh, R. J., 2014).
- Site Specific Nutrient Management promotes the optimal use of existing indigenous nutrients from soil, plant residues, manure, and irrigation water combined with the timely application of fertilizers at appropriate rates to match crop needs during the cropping season.

OBJECTIVES

The study was focused to evaluate the performance of inbred lowland rice varieties under varying nutrient management options in irrigated lowland ecosystem in Luna, Apayao. Specifically, it aimed to:

1.Compare the growth and yield performance of the different inbred lowland rice varieties under irrigated lowland ecosystem;

2.Determine whether the cultivars respond differently to nutrient management options;

3.Identify the best nutrient management options that can be used in irrigated lowland ecosystem; and

4.Determine the production economics of the different inbred lowland rice varieties grown under different nutrient management options.

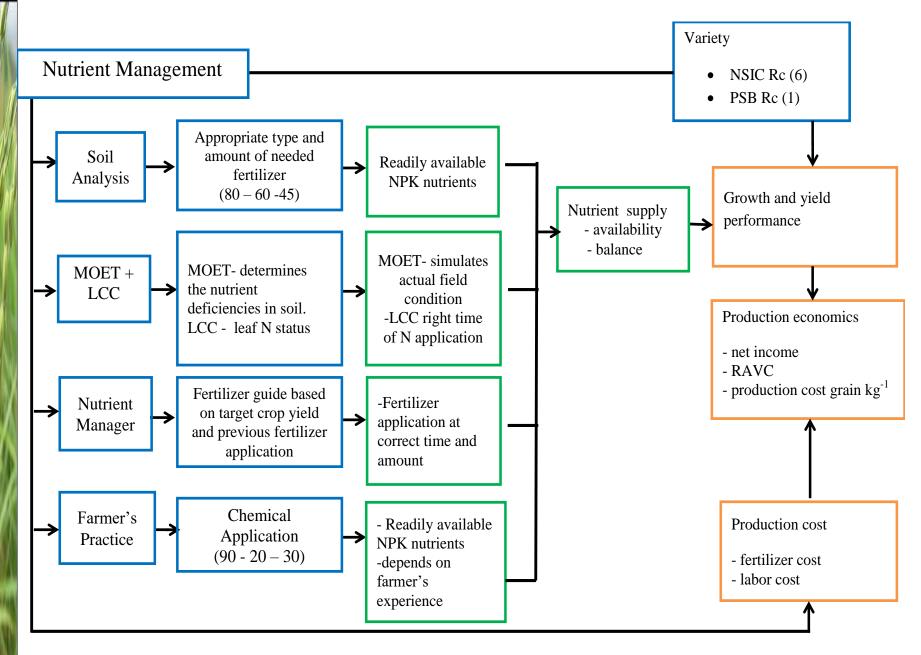


Figure 1. Conceptual Paradigm of the Study.

Locale of the study

Luna is geographically situated in the northern part of the province of Apayao. It is bounded by the Apayao river in the east, the Malunog River in the south, by the Cagayan provincial boundary in the north and by the municipality of Calanasan in the west. Luna is under type 111 climate which is characterized by unpronounced rain period with dry season lasting for one to three months and with a rainfall more or less evenly distributed throughout the year.

Treatments

Nutrient Management (vertical factor) T1-Soil Analysis T2-MOET + LCC T3-Crop Manager T4–Farmer's Practice B. Varieties (horizontal factor) V1 - NSIC 216 V2 - NSIC 222 V3 - NSIC 224 V4 - NSIC 226 **V5- NSIC 238** V6-NSIC240 V7- PSB Rc 82 (check variety)

Research Design

Strip-Plot design using R – CropStat program

Soil Analysis

Table 1. Analysis of soil sample from the experimental site (.52ha)

	NUTRIENT REQUIREMENT						
CROP VARIETY/AGE	NITROGEN	POTASSIUM					
Hybrid Rice - wet	100	60	65				
Hybrid Rice - dry	120	60	45				
Inbred Rice - wet	80	60	45				
Inbred Rice - dry							
	100	60	45				

Source: Regional Soils Laboratory, Tuguegarao City

Fertilizer Recommendation

Inbred Rice Basal Application.

Topdress

<u>80 - 60 - 45</u>

3.2 bags/ha 14-14 -14, 2.2 bags/ha 1 6-20- 0, 1.7 bags/ha 0-18-0 and 10 bags/ha organic fertilizer 1.7 bags/ha 46-0-0 0.75 bags/ha 0-0-60 at panicle initiation

Minus One Element Technique and Leaf Color Chart (MOET + LCC)

Table 2. Recommendation Per Hectare (For target yields of 5 tons for dry season and 4 tons for wet season.

	10 days after transplanting (DAT)	TIMING OF FERTILIZER APPLICATION						
	for 21 – day old seedlings	Mid- tillering	Stage	Panicle Initiation Stage				
14 DAT for dapogDeficiencSeedlings or 20yDAT for directSeeded		Dry season	Wet season	Dry season	Wet season			
N,P and S	2 bags of ammophos And 0.5 bag ammonium sulfate	2.5bagsurea	1.5 bag urea	JS				
Source: Minus	One Element Technique Kit							

Crop Manager

Table 3. Recommended rate per hectare based on Crop manager.

GROWTH STAGE	DAT	CURRENT YIELD (60 sacks at 50 kg/sack 3/ha-1 (14% MC)
Early	0 -10	14 – 14 – 14: 1 3/4 bags
Active tillering	20 -24	Urea: 27 kg
Panicle	27 - 31	Urea: 1 bag
initiation		

Source: Crop Manager for Rice

Farmers' Practice

 Table 4. Rate of application for farmers' practice in hectare basis

METHOD AND TIME	RATE (ha ⁻¹)	FERTILIZER MATERIAL
OF APPLICATION	(bags)	
7 DAT	1.43	Complete fertilizer
	1.52	Urea
Topdress at 21 DAT	1.43	Complete fertilizer
	1.52	Urea
	3.33	Muriate of potash

Fertilizer Application

Table 5. Method and time of fertilizer application and the rate and type of fertilizer materials used.

NUTRIENT	METHOD AND TIME OF	RATE PLOT ¹	FERTILIZER
MANAGEMENT	APPLICATION	(g)	MATERIAL
Soil analysis	basal application	96.00	Complete fertilizer
		66.00	Ammophos
		51.00	Solophos
		300.00	Vermicompost
	Top dress at maximum tillering	51.00	Urea
	Panicle initiation	22.50	Muriate of potash
MOET+LCC	10 DAT	30.00	Urea
		60.00	Ammophos
		.30	Ammonium sulfate
		15.00	Zinc sulfate
	Panicle initiation	30.00	Urea
	Booting stage	30.00	Urea
Crop Manager	5 DAT	100.96	Complete fertilizer
	Active tillering	5.19	Urea
	Top dress PI	57.69	Urea
Farmer's Practice	7 DAT	42.86	Complete
		45.65	Urea
	Topdress at 21 DAT	42.86	Complete
		45.65	Urea
		10.00	Muriate of Potash

Table 6. Growth Parameters of the Inbred Lowland Rice varieties

Treatment	Plant Vigor	Plant Height	Days to Heading	Days to Maturity	Total Tillers	Productive Tillers	Unprodu ctive Tillers
Nutrient management (A)	ns	**	*	**	Ns	*	*
Soil Analysis	4.17	104.00 ^{bc}	65 ^b	95 ^c	15.74	75.70 ^b	24.30ª
MOET + LCC	3.92	107.00ª	66 ^{ab}	96 ^b	16.76	79.41ª	20.59 ^b
Crop Manager	3.71	105.00 ^b	67ª	97ª	16.46	74.45 ^b	25.55ª
Farmer's Practice	3.22	102.00 ^c	66 ^{ab}	97ª	16.25	74.74 ^b	25.26ª
Variety (B)	ns	**	**	**	*	Ns	Ns
NSIC Rc 216	3.80	97.00 ^b	66 ^{ab}	96 ^{ab}	16.90ª	72.30	27.70
NSIC Rc 222	4.23	98.00 ^b	64 ^b	94 ^b	17.87ª	75.92	24.08
NSIC Rc 224	4.19	107.00ª	67 ^{ab}	97 ^{ab}	15.06ª	77.52	22.48
NSIC Rc 226	3.70	107.00ª	64 ^b	95 ^b	15.51ª	76.62	23.38
NSIC Rc 238	3.98	108.00ª	66 ^{ab}	96 ^{ab}	17.73ª	75.95	24.05
NSIC Rc 240	3.76	108.00ª	69ª	99 ª	14.40ª	76.25	23.75
PSB Rc 82	3.63	106.00ª	66 ^{ab}	96 ^{ab}	16.64ª	77.97	22.03
АХВ	ns	ns	ns	ns	ns	ns	ns
CVa (%)	1.90	2.76	1.84	1.08	6.14	5.40	17.16
CVb (%)	2.98	2.43	3.00	2.39	15.09	9.83	31.26
CVc (%)	9.45	2.25	1.57	0.93	12.29	6.81	21.66

Table 7. Panicle Length, Filled and Unfilled, Seed size, Harvest Index and Grain Yield

Treatment	Panicle length	Filled Grains	Unfilled Grains	Seed Size g/1000	Harvest Index	Grain Yield (t/ha)
				9,1000		
Nutrient	**	**	**	ns	ns	ns
management (A)						
Soil Analysis	21.90 ^b	60.17 ^c	39.83 ^b	29.49	34.93	3.90
MOET + LCC	22.54ª	58.83 ^d	41.17 ^a	29.40	33.75	4.88
Crop Manager	21.45 ^c	70.31ª	29.69 ^d	29.32	36.21	4.39
Farmer's Practice	21.94 ^b	68.36 ^b	31.64 ^c	29.35	34.73	3.84
Variety (B)	**	**	**	**	**	Ns
NSIC Rc 216	23.05ª	73.43ª	26.57 ^e	30.49 ^b	34.82 ^{ab}	4.57
NSIC Rc 222	21.51 ^b	65.01 ^b	34.99 ^d	28.47 ^d	34.75 ^{ab}	4.03
NSIC Rc 224	23.93ª	57.77 ^e	42.23ª	29.63 ^c	36.08 ^{ab}	4.01
NSIC Rc 226	21.53 ^b	66.49 ^b	33.51 ^d	34.57ª	43.00 ^a	5.01
NSIC Rc 238	21.14 ^b	61.43 ^d	38.57 ^b	27.67 ^e	37.06 ^{ab}	3.72
NSIC Rc 240	21.20 ^b	64.44 ^b	36.56 ^c	27.54 ^e	26.03 ^b	4.47
PSB Rc 82	21.32 ^b	63.38 ^c	36.62 ^c	27.36 ^e	32.58 ^{ab}	3.93
AXB	ns	**	**	ns	ns	ns
CVa (%)	2.56	8.63	16.05	0.83	27.50	17.32
CVb (%)	4.11	5.03	9.11	1.02	13.21	1.78
CVc (%)	3.57	7.23	13.10	0.76	17.77	9.35

Table 7. Cost and Return Analysis

VARIETY/ NUTRIENT	GRAIN	PRODUCTION	GROSS	NET	RAVC	PRODUCTION COST
MANAGEMENT	YIELD	COST	INCOME	INCOME	(%)	Kg grain ⁻¹
	(tons)	(PhP)	(PhP)	(PhP)		(PhP)
NSIC Rc 216						
Soil Analysis	4.17	47,137.00	83,400.00	36,263.00	76.93	11.30
MOET+LCC	5.25	38,075.00	105,000.00	66,925.00	175.77	7.25
Crop Manager	4.81	41,119.00	96,400.00	55,281.00	134.40	8.55
Farmer's Practice	4.07	37,641.00	81,400.00	43,759.00	116.25	9.25
NSIC Rc 222						
Soil Analysis	3.70	47,007.00	74,000.00	26,993.00	57.42	12.70
MOET+LCC	4.66	37,932.00	93,200.00	55,268.00	145.70	8.14
Crop Manager	4.16	40,950.70	83,200.00	42,249.30	103.07	9.84
Farmer's Practice	3.61	37,524.00	72,200.00	34,676.00	92.41	10.39
NSIC Rc 224						
Soil Analysis	3.42	46,942.00	68,400.00	21,458.00	45.71	13.71
MOET+LCC	4.75	37,945.00	95,000.00	57,005.00	150.36	7.99
Crop Manager	3.95	40,885.00	79,000.00	38,114.00	93.22	10.35
Farmer's Practice	3.93	37,602.00	78,600.00	40,998.00	109.03	9.57
NSIC Rc 226						
Soil Analysis	4.61	47,254.00	92,500.00	45,246.00	95.75	10.25
MOET+LCC	5.27	38,088.00	105,400.00	67,312.00	176.73	7.23
Crop Manager	5.54	41,301.70	110,000.00	68,692.30	166.32	7.46
Farmer's Practice	4.63	37,778.80	92,600.00	54,821.20	145.11	8.16
NSIC Rc 238						
Soil Analysis	3.32	46,916.00	66,400.00	19,484.00	41.53	14.13
MOET+LCC	4.56	37,906.00	91,200.00	53,294.00	140.60	8.31
Crop Manager	3.97	40,898.00	79,400.00	38,502.00	94.14	10.30
Farmer's Practice	3.04	37,368.00	60,800.00	23,432.00	62.71	12.72
NSIC Rc 240						
Soil Analysis	4.32	47,176.00	86,400.00	39,224.00	83.14	10.92
MOET+LCC	4.91	37,997.00	98,200.00	60,203.00	158.44	7.74
Crop Manager	4.60	41,054.70	92,000.00	50,945.00	124.09	8.92
Farmer's Practice	4.05	37,628.00	81,000.00	43,372.00	115.27	9.29
PSB Rc 82						
Soil Analysis	3.80	43,533.00	76,000.00	32,467.00	74.58	11.46
MOET+LCC	4.74	37,945.00	94,800.00	56,885.00	149.84	8.00

Conclusion

Based on the results of the study, inbred lowland rice varieties were suited and adapted in the locality, specifically, NSIC Rc 226 for it outweighed other varieties in terms of yield, gross income, net income and RAVC. In general varieties performed better on MOET+LCC.

Recommendations

Site-specific nutrient management provides scientific principles for optimally supplying rice with essential nutrients. It enables rice farmers to tailor nutrient management to the specific conditions of their field, and it provides a framework for nutrient best management practices.

The following recommendations are forwarded based on the conclusion and their implications.

To ensure at least an optimum rice yield, Soil analysis and nutrient manager can be used. However, MOET+LCC is recommended to attain maximum yield.

NSIC Rc 226 under MOET+LCC is highly recommended for it give the highest production, gross income, net income and RAVC.

Thank you

