# NOVEL GENETIC POPULATIONS FOR BOVINE BREEDING PROGRAMS IDENTIFIED THROUGH MOLECULAR DIVERSITY ANALYSIS



#### PJCIcalia, AJSalces, GGLudan



# **KNOWLEDGE GAP**

#### Climate change affects animal populations.











# **KNOWLEDGE GAP**

# There is a decreasing biodiversity.

- At least one breed of domestic species disappeared each month worldwide (FAO).
- The need to develop strategies how to conserve local genetic groups.









# **OBJECTIVES**

#### Identify genetic populations that can survive climate related concerns.

- 1. Estimate inbreeding within individuals, subpopulations and populations.
- 2. Evaluate variability within individuals, subpopulations and populations.
- 3. Construct a phylogenetic tree for Batanes, Ilocos, Brahman and Holstein-Sahiwal cattle.



# **METHODS**

# Assessment of performance and molecular features.

#### **1. Blood Collection**

FTA cards were used to store the blood collected from jugular veins of the samples.





#### **2. DNA Extraction**



A micropuncher was used to obtain discs from the cards and a lysis solution was made to extract the DNA.

#### **3. Evaluation of Quality and Quantity**

Purity and concentration of the extracts using the novel techniques was evaluated using NanoDrop.



# **METHODS**

#### 4. Polymerase Chain Reaction

# Primers were clustered based on sizes to allow running samples efficiently.



| 1  | 120       | 1        | 130 14 | 0 150    | 160        | 170 | 180      | 190                                                                                                                                                                                       | 200   | 210 | 220   | 23   | 30 240 | 250       | 260 | 270 | 280 | 290                                             | 300 |  |
|----|-----------|----------|--------|----------|------------|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-------|------|--------|-----------|-----|-----|-----|-------------------------------------------------|-----|--|
| 2  |           |          |        |          |            |     |          |                                                                                                                                                                                           |       |     |       |      |        |           |     |     |     |                                                 |     |  |
| 3  | Group I   | 120-126  |        | 139      | -169       |     | 179-181  |                                                                                                                                                                                           |       |     | 218   | -226 |        |           |     |     |     |                                                 |     |  |
| 4  |           | ILSTS013 |        | ILST     | 5033       |     | ILSTS008 |                                                                                                                                                                                           |       |     | ILSTS | 6103 |        |           |     |     |     |                                                 |     |  |
| 5  |           |          |        |          |            |     |          |                                                                                                                                                                                           |       |     |       |      |        |           |     |     |     |                                                 |     |  |
| 6  |           |          |        |          |            |     |          |                                                                                                                                                                                           |       |     |       |      |        |           |     |     |     |                                                 |     |  |
| 7  | Group II  |          |        | 128-160  |            |     |          |                                                                                                                                                                                           |       |     |       | 1    | 70-284 |           |     |     |     |                                                 |     |  |
| 8  |           |          |        | ILSTS028 |            |     |          |                                                                                                                                                                                           |       |     |       | ILS  | TS023  |           |     |     |     |                                                 |     |  |
| 9  |           |          |        |          |            |     |          |                                                                                                                                                                                           |       |     |       |      |        |           |     |     |     |                                                 |     |  |
| 10 |           |          |        | <        | Primer 있음> | •   |          | <prime< td=""><td>r 있음&gt;</td><td></td><td></td><td></td><td>&lt;</td><td>Primer 있을</td><td>&gt;</td><td></td><td></td><td><prime< td=""><td>있음&gt;</td><td></td></prime<></td></prime<> | r 있음> |     |       |      | <      | Primer 있을 | >   |     |     | <prime< td=""><td>있음&gt;</td><td></td></prime<> | 있음> |  |
| 11 | Group III |          |        |          | 157-169    |     |          | 181-                                                                                                                                                                                      | 185   |     |       |      |        | 237-257   |     |     |     | 281-                                            | 300 |  |
| 12 |           |          |        |          | ETH152 F   |     |          | ILSTS                                                                                                                                                                                     | 6005  |     |       |      |        | AGLA293   |     |     |     | ILSTS                                           | 006 |  |
| 13 |           |          |        |          |            |     |          |                                                                                                                                                                                           |       |     |       |      |        |           |     |     |     |                                                 |     |  |
| 14 | Single    |          |        | 148      | 3-160      |     |          |                                                                                                                                                                                           |       |     |       |      |        |           |     |     |     |                                                 |     |  |
| 15 |           |          |        | ILST     | S050       |     |          |                                                                                                                                                                                           |       |     |       |      |        |           |     |     |     |                                                 |     |  |
|    |           |          |        |          |            |     |          |                                                                                                                                                                                           |       |     |       |      |        |           |     |     |     |                                                 |     |  |



# 5. Analysis of PCR Products by ABI Sequencing Machine

6. Data Analysis Using POPGENE

F-statistics analysis and gene flow for each of the 11 microsatellite markers in four cattle populations.

| Locus    | F <sub>is</sub> | <b>F</b> <sub>st</sub> | F <sub>it</sub> | Nm     |
|----------|-----------------|------------------------|-----------------|--------|
| AGLA293  | 0.3878          | 0.4872                 | 0.1624          | 1.2895 |
| ETH152   | 0.6367          | 0.7492                 | 0.3096          | 0.5574 |
| ILSTS005 | 0.4987          | 0.5238                 | 0.0501          | 4.7439 |
| ILSTS006 | 0.5150          | 0.6281                 | 0.2331          | 0.8224 |
| ILSTS008 | 0.4346          | 0.4629                 | 0.0501          | 4.7430 |
| ILSTS013 | 0.3818          | 0.5297                 | 0.2392          | 0.7950 |
| ILSTS023 | 0.3225          | 0.4566                 | 0.1979          | 1.0134 |
| ILSTS028 | 0.4396          | 0.5441                 | 0.1866          | 1.0898 |
| ILSTS033 | 0.4218          | 0.5412                 | 0.2065          | 0.9608 |
| ILSTS050 | 0.5007          | 0.5554                 | 0.1095          | 2.0322 |
| ILSTS103 | 0.3684          | 0.4914                 | 0.1947          | 1.0339 |
| Mean     | 0.44            | 0.55                   | 0.18            | 1.09   |

Inbreeding **Estimate** a) heterozygote deficiency b) inbreeding within subpopulations c) inbreeding bet. populations



#### **Genetic Diversity**

a) F<sub>st</sub> = 25% - 55%, indicates high genetic differences bet. populations based on Sewall and Wrights proposed F<sub>st</sub> range.

| Population | Batanes | llocos | Brahman | HS |
|------------|---------|--------|---------|----|
| Batanes    | *       |        |         |    |
| llocos     | 0.1443  | *      |         |    |
| Brahman    | 0.3091  | 0.4423 | *       |    |
| HS         | 0.4744  | 0.6071 | 0.2366  | *  |

Nei's original measures of genetic identity and genetic distances based on 11 microsatellite markers in four cattle populations



Dendogram showing the genetic relationship among the four genetic groups of cattle populations based on Nei's genetic distance (1000 bootstrap) using the modified neighbor procedure of PHYLIP Version 3.5

Genotype frequencies & fitness to Hardy-Weinberg equilibrium of llocos cattle for *GH1*.

|          |          |          |          | •            | Chi-                  |
|----------|----------|----------|----------|--------------|-----------------------|
| LOCATION | GENOTYPE | OBSERVED | EXPECTED | ALLELE       | Square                |
|          |          |          |          |              | HWE                   |
|          | AA       | 21       | 17       | 0.65         | x <sup>2</sup> =8.63  |
| Banna    | AL       | 10       | 18       | 0.35         | p<0.003               |
|          | LL       | 9        | 5        |              | (df=1)                |
|          | AA       | 17       | 10       | 0.51<br>0.49 | x <sup>2</sup> =17.56 |
| Marcos   | AL       | 7        | 20       |              | p<0.0003              |
|          | LL       | 16       | 10       |              | (df=1)                |
|          | AA       | 31       | 28       | 0.84<br>0.16 | x <sup>2</sup> =12.81 |
| Solsona  | AL       | 5        | 11       |              | p<0.003               |
|          | LL       | 4        | 1        |              | (df=1)                |

| 1801 | cacct <b>cggac</b>   | cgtgtctatg   | agaagctgaa               | <b>g</b> gacctggag | gaaggcatcc   | tggccctgat            |
|------|----------------------|--------------|--------------------------|--------------------|--------------|-----------------------|
| 1861 | gcgggtgggg           | atggcgttgt   | gggtcccttc               | catgtggggg         | ccatgcccgc   | cctctcctgg            |
| 1921 | cttagccagg           | agaatgcacg   | tgggcttggg               | gagacagatc         | cctgctctct   | ccctctttct            |
| 1981 | agcagtccag           | ccttgaccca   | ggggaaacct               | tttccccttt         | tgaaacctcc   | ttcctcgccc            |
| 2041 | ttctccaagc           | ctgtagggga   | gggtggaaa <mark>a</mark> | <b>t</b> ggagcgggc | aggagggagc   | tgctcctgag            |
| 2101 | ggcccttcgg           | cctctctgtc   | tctccctccc               | ttggcaggag         | ctggaagatg   | gcaccccccg            |
| 2161 | ggctg <b>g g</b> cag | g atcctcaago | c agacctatga             | a caaatttgad       | c acaaacatgo | c gcag <b>tga cga</b> |
| 2221 | cgcgctgctc           | aag aactaco  | g gtetgetete             | c ctgcttccgg       | g aaggacctgo | c ataagacgga          |

Genotype frequencies & fitness to Hardy-Weinberg equilibrium of llocos cattle for *GH2*.

|                                       |                        |          |          | •      | Chi-                  |
|---------------------------------------|------------------------|----------|----------|--------|-----------------------|
| LOCATION                              | GENOTYPE               | OBSERVED | EXPECTED | ALLELE | Square                |
| · · · · · · · · · · · · · · · · · · · |                        |          |          |        | HWE                   |
|                                       | AA                     | 11       | 3        |        |                       |
|                                       | LL                     | 0        | 1        | 0.28   | x <sup>2</sup> =80.38 |
| Banna                                 | LV                     | 29       | 11       | 0.36   | p<0.003               |
|                                       | AV                     | 0        | 8        | 0.36   | (df=3)                |
|                                       | VV                     | 0        | 1        |        |                       |
|                                       | AA                     | 6        | 1        |        |                       |
|                                       | $\mathbf{L}\mathbf{L}$ | 0        | 7        | 0.14   | x <sup>2</sup> =82.09 |
| Marcos                                | LV                     | 34       | 15       | 0.43   | p<0.000               |
|                                       | AV                     | 0        | 5        | 0.43   | (df=3)                |
|                                       | VV                     | 0        | 7        |        |                       |
|                                       | AA                     | 9        | 2        |        |                       |
|                                       | LL                     | 1        | 6        | 0.23   | x <sup>2</sup> =76.05 |
| Solsona                               | LV                     | 0        | 7        | 0.40   | p<0.000               |
|                                       | AV                     | 30       | 12       | 0.38   | (df=3)                |
|                                       | VV                     | 0        | 6        |        |                       |

2041 ttctccaage ctgtagggga gggtggaaaa tggageggge aggaggga**ge <u>tgetectgag</u>** 2101 **ggccetteg**g cetetetgte tetecetee ttggeaggag etggaagatg geaceeeeg 2161 ggetgggeag atceteaage agaeetatga caaatttgae acaaaeatge geagtgaega 2221 egegetgete aagaaetaeg gtetgetete etgettee**g|g** aaggaeetge ataagaegga 2281 gaegtaeetg **agggteatga agtgeegeeg e|t**teggggag geeagetgtg eettetagtt

Genotype frequencies & fitness to Hardy-Weinberg equilibrium of llocos cattle for *GHR*.

| LOCATION   | GENOTYPE | OBSERVED | EXPECTED | ALLELE |
|------------|----------|----------|----------|--------|
| Location 1 | AA       | 1        | 1.00     | 1.00   |
| Location 2 | AA       | 1        | 1.00     | 1.00   |
| Location 3 | AA       | 1        | 1.00     | 1.00   |

# **GENE FIXATION!!!!!**

# No Opportunity for Phenotypic and Genetic Improvement

# **IMPLICATIONS**

- 1. Batanes and llocos cattle are genetically distant from one another.
- 2. Batanes and Ilocos cattle have a very high degree of introgression from that of the imported breeds.
- The high genetic variation of the two local groups shows the potential of these animals to have diverged in adapting to local ecotypes.
- 4. PHILIPPINES HAS AN EXISTING BOVINE POPULATIONS THAT CAN SUBSIST EXTREME ENVIRONMENTAL DUE TO CLIMATE CHANGE.