Knawledge Ponstruction Patterns' Surcess in Problem-Solving: Its Carrelation to Mathematics Grade and Mathematics Experience

Performance of Filipinos Students in Mathematics

Performance of

 Singapore, J apan, and Korea in MathematicsProblemSolving

Knowledge Construction Patterns (KCPs) Problem-Solving

Figure 5. KCP 1: Charlie is 35 minutes late while Mike is 15 min early

Successful KCP

Partially Successful KCPs

Figure 7. KCP 3: Charlie is 15 min early while Mike is 5 min late.

Figure 9. KCP 6: Charlie is 10 min late while Mike is 5 min early.

Figure 10: KCP 7: Charlie is 10 min early while Mike is 5 min late.

Figure 11. KCP 8: Charlie is 10 min late while Mike is 5
minlate.

Unsuccessful KCPs

Distribution of students to the KCPs

\square Successful ■ Partially Successful ■ Unsuccessful

Distribution of students grouped according to Mathematical experience to levels of problem solving success

Exposure to mathematics subjects, scarcely contribute in improving their problem-solving success.
$\mathrm{t}_{\text {computed }} \mathbf{0 . 2 9}{ }^{\text {ns }}$ table value $=\mathbf{1 . 9 8} \quad \mathrm{r}=\mathbf{0 . 0 3}$

Correlation between Average Mathematics Grade and level of Problem-solving Success

Success in problem-solving is weakly associated to
average grade.
$\mathrm{t}_{\mathrm{c}=} \mathbf{2 . 2 9}^{*} \quad$ table value $=1.98 \quad \mathrm{r}=-\mathbf{0 . 2 2}$

Conclusions

- Students exhibit different construction patterns in problem-solving even when confronted with the same problem situation.
- The average mathematics grade of a student is not a factor that differentiates students with successful construction patterns from those that are not.
- The dismal performance of students in problemsolving is henceforth attributed to the quality of mathematics education they have received.

Recommendations

Recommendations

