

Morphological, Biochemical and Molecular Characterization Of Gibberellic Acid- Producing Bacteria, Isolated from *Saccharum* sp. and *Eleusine* sp. and Their Effect On The Growth Of Corn and Lettuce

Vanessa Cris D. Blancaflor¹, Jocelyn T. Zarate² and Celia B. Dela Viña³

^{1, 3} Institute of Biological Science, CAS, University of the Philippines Los Banos (UPLB) and
² National Institute of Molecular Biology and Biotechnology (BIOTECH), UPLB,
College, Laguna, Philippines

Introduction

Gibberellic Acid (GA)

- Break seed dormancy
- Enhance stem and root elongation
- Delays senescence
- Produced as secondary metabolite by bacteria that functions as signaling factor to the host plant

136 known chemical structures GA₁, GA₂ and GA₄ for shoot elongation GA₃ removed inhibition of sugarcane growth due to salt stress

Objectives

- Characterize GA secreting bacteria from sugarcane and grass roots
- Quantify GA production
- Identify high GA producing strains through 16S rDNA sequencing
- Determine effects of bacterial isolates on plant development

Methodolology

Isolation of Endophytic plant growth promoting Bacteria

Qualitative and Quantitative Analysis

Biochemical Partial Characterization

16S rDNA isolation and sequencing

in vivo Assay in corn and lettuce as host plants

Isolation of endophytic PGPB

Extraction from root tips of sugarcane and grass Spread Plating on Congo red-Nitrogen Free medium and *Azotobacter* medium

Serial

Dilution

fppt.com

Qualitative and quantitative analysis of Gibberellic acid

GIBBERELLIC ACID PRODUCTION ASSAY (Graham and Thomas, 1961)

Qualitative and Quantitative Analysis of Gibberellic Acid

Phosphomolybdic Acid Reagent (Graham and Henderson, 1961)

Partial Characterization of Bacterial Isolates

Gram Staining Method

fppt.com

Biochemical Tests

- Test for Oxygen Requirement
- Catalase Reaction
- Utilization of Citrate
- Starch Hydrolysis Test
- Tween80 Hydrolysis
- Gelatin Liquefaction test
- Acid Production from Carbohydrates

Molecular Identification of Bacterial Isolates

Genomic DNA Extraction

• (CTAB Method)

Gene Amplification

- FC/RC: 30 cycles
- FC27 (5'-AGAGTTTGATCCTGGCTCAG-3')
- RC1492 (5'-TACGGCTACCTTGTTACGACTT-3')
- Annealing Temp: 55°C

16S rDNA Sequencing

Basic Local Assignment Tool (BLAST)

RR+T1 RR+T2 RR+T3 RR+T4 RR+T5 RR+T6 RR+T7 RR+T8 RR+T9

RESULTS AND DISCUSSION

fppt.com

Isolation of Plant Growth Promoting Bacteria

Table 1. Number of bacterial isolatesobtained from CRNF and ATB media andtheir assigned codes.

Sample	Media	No. of Isolates	Isolate codes (VCB)	-control +c	
Sugarcane	CRNF	7	1-5sc, 16-17sc	Fig. 1. Repre	
ougareane	ATB	4	12-15sa	nonresult	
Grass	CRNF	8	6-8gc, 18-22gc		
	ATB	3	9-11ga		
		22 isolates	Legend: (CRNF) Congo medium, (ATB) <i>Azotob</i>	-red Nitrogen-free <i>acter</i> medium	

Fig. 1. Representative solution color from result of the Gibberellic Acid Assay

Quantification of GA produced

Standard Curve of Gibberellic Acid

fppt.co

Partial Characterization of Bacterial Isolates

Bacterial Isolate	Colony Morphology	Colony size	Gram Reaction	Cell Morphology	Cell size
VCB6gc				rod	1-1.5µm
VCB7gc			T	rod	1-1.5µm
VCB11ga	a b		c	rod	3-5µm
VCB12sa				cocci	1-2µm
VCB16sc				cocci	1-2µm
VCB17sc	d		f	cocci	1-1.5µm

Biochemical Characterization

Biochemical Characterization

Acid Production from Carbohydrates

Table 4. Acid and gasproductionofisolated bacteria fromcarbohydrates.

Molecular Characterization with 16s DNA sequencing

Bacterial Isolates	Description	Length (bp)	Score (bits)	E value	Identities %
VCB6gc	<i>Pseudomonas hibiscicola</i> strain ATCC 19867	1191	1827	0.0	97%
VCB7gc	Paenibacillus lautus strain NBRC 15380	1181	730	0.0	80%
VCB11ga	<i>Stenotrophomonas pavanii</i> strain LMG 25348	1166	372	2e-102	69%
VCB12sa	<i>Micrococcus yunnanensis</i> strain YIM 65004	1015	901	0.0	83%
VCB16sa	<i>Staphylococcus hominis</i> sbs. novobiosepticus strain GTC 1228	1180	1918	0.0	98%
VCB17sa	Staphylococcus aureus (identified	through b	iochemica	l characte	ristics)

Molecular Characterization with 16s DNA sequencing

	Isolates	Description	Related Literature Review		
	VCB6gc	<i>Pseudomonas hibiscicola</i> strain ATCC 19867	Type strains of <i>P. hibiscola</i> belong to <i>S. maltophilia</i> , a Gram neg; catalase +; use in biotechnological applications; may cause nosocomial infection: http://www.bacterio.net/stenotrophomonas.html		
	VCB7gc	<i>Paenibacillus lautus</i> strain NBRC 15380	PGPB with P removal and N2 fixation properties; biocatalyst for functional health food (World J of Microbiol and Biotech, 2008; (http://gcm.wfcc.info/speciesPage.jsp?strain_name=Paenibacillus%20lautus		
	VCB11ga	Stenotrophomonas pavanii strain LMG 25348	Endophytic N ₂ Fixer from Brazilian sugarcane variety used in Organic farming (Ramost et al Int J Sys Evol Microbiol 2011 61(4):926-31)		
	VCB12sa	<i>Micrococcus yunnanensis</i> strain YIM 65004	Catabolically versatile; produce restriction enzymes and vitamins; isolated from Polyspora axillary roots; (https://en.wikipedia.org/wiki/Micrococcus)		
fpi	VCB16sa	Staphylococcus hominis sbs. novobiosepticus strain GTC 1228	Coagulase negative, found in the skin, blood etc, antibiotic resistant; biofilm former; (http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061161)		

Effect of Bacterial Isolates with on the Growth of Corn (Zea mays L.)

Effect of Bacterial Isolates with Rec. Rate (RR) of Chem Fertilizer (100-40-40 kg

Fig. 14. Representative root samples of corn (Zea mays L.) grown for two months under screen house condition as affected by bacterial inoculation and with no chemical fertilizer (top) and with Rec. Rate of chemical (RR): T1(-control), **T2(+control)**, **T3 (VCB6)**, T4(VCB7), T5(VCB11), T6(VCB12), T7(VCB16), T8(VCB17), and T9(Mixed inoculants).

fppt.con

Fig. 15. Representative plant samples of lettuce (L. *sativa*) grown for two months under screen house condition with zero(up) and full(down) recommended rates of chemical fertilizer (RR) and microbial inoculation: T1(-control), T2(+control), T3 (VCB6), T4(VCB7), T5(VCB11), T6(VCB12), T7(VCB16), T8(VCB17), and T9(Mixed inoculants).

Summary

- Endophytic bacteria from sugarcane and grass roots were isolated with capacity to produce GA (6/22)
- GA concentration ranged from 34.11µg ml⁻¹-79.11µg ml⁻¹ highest in strain VCB6gc; lowest in VCB11ga
- Biochemical characterization was enlightening, but tedious work
- Molecular characterization gave insight in ID of isolates
- GA production is also done by commensal or pathogenic strains as well as plant growth promoting bacteria
- GA producing isolates enhanced corn stem length and roots
- GA production has positive combination with chemical fertilizer

Conclusion

- Use of beneficial microorganisms with PGPB properties (ie GA production) should be encouraged for better plant growth
- More *in vivo* trials should be done on other crops to show positive effect of GA producing isolates
- Microbial isolates need further characterization through polyphasic analysis since percent identities were <97% suggesting that they could be possible novel strains or species.

Thank you for your kind attention!

Acknowledgement: PCAARRD funding agency BIOTECH IBS, CAS

Students and staff at MykoPlus Laboratory

fppt.com